Neuro-fuzzy approach for development of new neuron model
نویسندگان
چکیده
The training time of ANN depends on size of ANN (i.e. number of hidden layers and number of neurons in each layer), size of training data, their normalization range and type of mapping of training patterns (like X–Y, X–DY, DX–Y and DX–DY), error functions and learning algorithms. The efforts have been done in past to reduce training time of ANN by selection of an optimal network and modification in learning algorithms. In this paper, an attempt has been made to develop a new neuron model using neuro-fuzzy approach to overcome the problems of ANN incorporating the features of fuzzy systems at a neuron level. Fuzzifying the neuron structure, which incorporates the features of simple neuron as well as high order neuron, has used this synergetic approach.
منابع مشابه
Type-2 Fuzzy Logic Approach To Increase The Accuracy Of Software Development Effort Estimation
predicting the effort of a successful project has been a major problem for software engineers the significance of which has led to extensive investigation in this area. One of the main objectives of software engineering society is the development of useful models to predict the costs of software product development. The absence of these activities before starting the project will lead to variou...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملPotential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths
Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...
متن کاملPotential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths
Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...
متن کاملAPPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES
The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 8 شماره
صفحات -
تاریخ انتشار 2003